c/_O Zoology Department University of Johannesburg P.O.Box 524 Auckland Park 2006 Tel: +27 (0) 11 489 3820

Fax: +27 (0) 11 489 3820 Fax: +27 (0) 11 489 2286 Email: gob@rau.ac.za gordono@uj.ac.

Econ@uj Investigational Report

WRC PROJECT K8/678

An assessment of selected biology aspects of the two Yellowfish species *Labeobarbus kimberleyensis* and *L. aeneus* from the Orange-Vaal River system, South Africa.

DELIVERABLE 4

Title:

Comprehensive survey reports based on the initial 2006 ecological state spring/summer surveys.

Prepared by: Linda Nel and Gordon O'Brien 30-11-2006

Deliverable overview

The assessment of the ecological integrity state of the reach of the Vaal River where the Telemetry Study is being undertaken is aimed at providing information as to the ecological state of the segment which will facilitate an understanding of the movement of the Yellowfish in the system in relation to the species biological requirements.

This report describes the materials and methods and results of the survey implemented to carry out the RHP methodology on the system associated with the Telemetry Study on Yellowfish on the Vaal River System during spring (23rd to 25th September) and summer on the (22nd to the 24th November) of 2006.

The aim of this portion of the study is to identify current and monitor on the changes in the ecological integrity state of the reach of the Vaal River, in a manner which can be directly related to the findings of the Telemetry study. Based on the aim of this study the following objectives have been established:

- Carry out a comprehensive biomonitoring survey of the reach of the Vaal River by implementing accredited methodologies and accredited personnel where applicable.
- 2. Carry out the surveys in a manner which will allow for direct comparison between the biomonitoring survey and the Telemetry study.

Survey information and materials and methods

The biomonitoring assessment of the aquatic ecosystems associated with the Yellowfish Telemetry Research study entailed the implementation of the National River Health Programme (RHP) of South Africa's approach to monitoring aquatic ecosystems.

The sampling regime of this study will be undertaken over a seasonal period (summer, autumn, winter and spring) thorough-out the duration of the study. This report documents the findings of the initial spring and summer (of 2006) surveys of the study. This report does not include an overview of the ecological state of the reach of the Vaal River as yet as that overview will be carried out once the work phase of the Telemetry project has reached completion. The research reach includes a section of Vaal River downstream of the Orkney weir and upstream of the Bloemhof dam. The main area where the research takes place is next to the R502 between

Orkney and Leeudoringstad. GPS co-ordinates of the site assessed is 27° 07' 50.0" (South) 26° 29' 15.4" (East).

The RHP is a national monitoring program used to monitor and assess South Africa's freshwater resources. Application of the RHP methodology (Roux, 2001) initially entails the selection and use of reference as apposed to monitoring sites. Once the sites have been selected the monitoring focus of the RHP is based on the application of biological indicators and relevant non-biological indicators (indices), to assess the condition or "health" of the aquatic ecosystems. The abiotic driver assessment procedures include; the assessment of physico-chemical variables of the water and sediment, according to the Resource Directed Measures (RDM) methodology (DWAF, 1999) and the IWQS technique (1999), and the use of two abiotic driver indices the IHAS (Invertebrate Habitat Assessment System) and HQI (Habitat Quality Index) for habitat integrity (McMillan, 1999). The biotic response indicator methodologies are in the form of various indices relating to the health of the aquatic ecosystem. The indices include: SASS5 (South African Scoring System) for invertebrates (Dickens and Graham, 2002), FAII (Fish Assemblage Integrity Index by Kleynhans (1996)) and the RVI (Riparian Vegetation Index) by Kemper, (2001). The results of these indices are presented in the form of ecological state categories.

Results:

The following section presents the results of two ecological integrity survey assessments. The first survey was carried out between the 24th to the 25th of September 2006. Table 1 presents the SASS 5 score sheet showing results of the September 2006 invertebrate survey. Table 2 presents the Fish and related habitat data sheets. Table 3 presents the Fish habitat related velocity-depth classes and cover present at the site. Table 4 presents the Instream habitat use & surrounding area land use. Table 5 presents the fish habitat integrity at site: Estimated impact of modifications. Table 6 presents the fish habitats sampled and efforts. Table 7 presents the fish sampled in the slow deep habitat. Table 8 presents the fish sampled in the slow shallow habitat. Table 9 presents the fish sampled in the fast habitats. Table 10 presents the habitat integrity index results.

General remarks from survey 1 include:

Sign of spawning (*C. carpio* and *C. gariepinus*) evident → every few reports of Yellowfish spawning.

Sampled fish many eggs in SASS net and have seen eggs all over algae strands.

The second survey was carried out between the 22th to the 23rd of November 2006. Table 11 presents the SASS 5 score sheet showing results of the November 2006 invertebrate survey. Table 12 presents the fish habitat, velocity-depth classes and cover present at site. Table 13 Presents the instream habitat use & surrounding area land use. Table 14 presents the Fish habitat integrity at site: Estimated impact of modifications Table 15 presents the Fish habitats sampled and efforts used. Table 16 presents the fish sampled in the fast shallow habitat. Table 17 presents the fish sampled in the slow shallow habitat. Table 18 presents fish sampled in the fast deep habitat. Table 19 fish sampled in the fast deep habitat.

Table 1 SASS 5 score sheet showing results of the September 2006 invertebrate survey.

Taxon		s	VG	GSM	тот	Taxon		s	VG	GSM	тот	Taxon		s	VG	GSM	тот
PORIFERA	5					HEMIPTERA						DIPTERA					
COELENTERATA	1					Belostomatidae*	3		1		1	Athericidae	10				
TURBELLARIA	3	1	Α	1	Α	Corixidae*	3	1	Α		Α	Blepharoceridae	15				
ANNELIDA		В	1	Α	В	Gerridae*	5					Ceratopogonidae		В	Α	Α	В
Oligochaeta	1					Hydrometridae*	6					Chironomidae	2	Α	Α	Α	В
Leeches	3	В			В	Naucoridae*	7		1		1	Culicidae*	1		Α		Α
CRUSTACEA						Nepidae*	3					Dixidae*	10			1	1
Amphipoda	13					Notonectidae*	3		Α		Α	Empididae	6				
Potamonautidae*	3	1	В		В	Pleidae*	4					Ephydridae	3				
Atyidae	8					Veliidae/Mveliidae*	5		Α		Α	Muscidae	1				
Palaemonidae	10					MEGALOPTERA						Psychodidae	1				
HYDRACARINA	8					Corydalidae	8					Simuliidae	5	В	Α	Α	В
PLECOPTERA						Sialidae	6					Syrphidae*	1				
Notonemouridae	14					TRICHOPTERA						Tabanidae	5				
Perlidae	12					Dipseudopsidae	10					Tipulidae	5				
EPHEMEROPTER A						Ecnomidae	8			1	1	GASTROPODA					
Baetidae 1sp	4					Hydropsychidae 1 sp	4		Α			Ancylidae	6	В			В
Baetidae 2 sp	6					Hydropsychidae 2 sp	6					Bulininae*	3				_
Baetidae > 2 sp	12	В	В	Α	С	Hydropsychidae > 2 sr	12	В			В	Hydrobiidae*	3				
Caenidae	6	В	В	В		Philopotamidae	10					Lymnaeidae*	3	1	Α		Α
Ephemeridae	15					Polycentropodidae	12					Physidae*	3				
Heptageniidae	13					Psychomyiidae/Xiphod	8					Planorbinae*	3				
Leptophlebiidae	9	В	Α	1	В	Cased caddis:						Thiaridae*	3				
Oligoneuridae	15			-		Barbarochthonidae SV	13					Viviparidae* ST	5				
Polymitarcyidae	10					Calamoceratidae ST	11					PELECYPODA					
Prosopistomatidae	15					Glossosomatidae SW	11					Corbiculidae	5	Α			Α
Teloganodidae SW						Hydroptilidae	6					Sphaeriidae	3				
Tricorythidae	9					Hydrosalpingidae SW	15					Unionidae	6	1		1	
ODONATA						Lepidostomatidae	10					Sass score		175			
Calopterygidae ST,	10					Leptoceridae	6	1			1	No. of taxa		31			
Chlorocyphidae	10	1	А		Α	Petrothrincidae SWC	11					ASPT	43	_			
Chlorolestidae	8					Pisuliidae	10										1
Coenagrionidae	4	1	Α		Α	Sericostomatidae SW	13					IHAS					
Lestidae	8		A			COLEOPTERA											
Platycnemidae	10					Dytiscidae*	5		1		1	Other biota:					
Protoneuridae	8					Elmidae/Dryopidae*	8		1		1	Fish eggs, barble	an	d Yello	wfish s	spawn	ina
Zygoptera juvs.	6					Gyrinidae*	5	В	A		B		٠				9
Aeshnidae	8					Haliplidae*	5		,								
Corduliidae	8		1		1	Helodidae	12					Comments:					
Gomphidae	6		· ·		·	Hvdraenidae*	8										
Libellulidae	4					Hydrophilidae*	5										
LEPIDOPTERA						Limnichidae	10										
Pyralidae	12					Psephenidae	10										

Table 2 Fish and related habitat data sheets

Assessor Name(s)	Andrew, Gordon, Linda							
Organisation	Econ@uj Date 24-25 / 09 / 2006							
Site information - assessed at the site								
Additional Comments: Mixed flow conditions. Opaque and green water. Moderate to turbid turbidity								

Table 3 Fish habitat related velocity-depth classes and cover present at site.

SLOW-DEEP: 5	SLOW-SHALLOW: 3	FAST-DEEP: 2	FAST-SHALLOW: 5
Overhanging vegetation: 2	Overhanging vegetation: 3	Overhanging vegetation: 2	Overhanging vegetation:
Undercut banks & root wads: 1	Undercut banks & root wads:	Undercut banks & root wads: 1	Undercut banks & root wads: 1
Substrate: 3	Substrate: 4	Substrate: 5	Substrate: 5
Aquatic macrophytes: 2	Aquatic macrophytes: 3	Aquatic macrophytes: 3	Aquatic macrophytes: 2
Water Column: 5	Water Column:	Water Column:	Water Column:
Remarks: sufficient depth, good cover and turbid water	Remarks:	Remarks:	Remarks:

Note: Estimate abundance of each velocity-depth class and cover type using the scale: 0 – absent; 1 – rare; 2 – sparse; 3 – common; 4 - abundant; 5 – very abundant

Table 4 Instream use & surrounding area land use

Wiers: 0	Cultivated lands: 1	Grazing: 3	Plantations: 0
Impoundments: 0	Residential: 1	Mines: 0	Industries: 0
Roads: 1	Bridges/crossings: 0	Pumps: 0	Canals: 0
Exotic vegetation: 3	Aquaculture: 0	Fishing: 3	Recreation/conservation: 2

(0=absent; 1=rare; 3=moderate; 4=extensive/intensive)

Remarks: Area assessed = OVYCMA on controlled farm Wag 'n Bietjie

Table 5 Fish habitat integrity at site: Estimated impact of modifications

Water abstraction: 1	Flow modification: 2	Bed modification: 0	Channel modification: 0
Inundation: 0	Exotic macrophytes: 3	Solid waste disposal:	Indigenous vegetation removal: 1
Exotic vegetation encroachment: 3	Bank erosion: 1		

(Severity of impact: 0=none; 1=small; 3=moderate; 5=large)

Remarks: Segment below Orkney river. Slight flow modification indications of upstream impact:s suspected - mining activities, eutrophication and water quality modification.

Table 6 Fish habitats sampled and efforts

Sample effort	Area 1	Area 2	
Electro shocker (min)	45 min	45 min	
Electro shocker: length	40 m	30 m	
sampled			
Electro shocker: width sampled	30 m	20 m	
Small seine (mesh size, length,	X 1 + as base	As base	
depth, hauls)			

Table 7 Fish sampled in the slow deep habitat.

Table 1 1 lon oumpion in the slow deep no	
Habitat (velocity-depth class(es)	Slow deep
Sampling method:	Electroshock and seine net
Species	Number (J = juvenile, A = abnormality)
PPHI	3
TSPA	2
BPAL	8
C.Carpio	Exotic = 15 between 2-8kg
CGAR	20 +
BTRI	3

Table 8 Fish sampled in the slow shallow habitat.

able of hell campied in the clew challew habitat.								
Habitat (velocity-depth class(es)	Slow shallow							
Sampling method:								
Species	Number (J = juvenile, A = abnormality)							
PPHI	1							
TSPA	2							
BPAL	6							
CGAR	3							

Table 9 Fish sampled in the fast habitats.

Table 3 Fish sampled in the last habitats	o
Habitat (velocity-depth class(es)	Fast shallow / deep
Sampling method:	
Species	Number (J = juvenile, A = abnormality)
BANE	8
PPHI	1
BPAL	3
CGAR	2
BTRI	3
LCAP	4

Table 10 Habitat integrity index		
Table 10 Habitat integrity index		
ASSESSOR/S NAME/S		
SYSTEM:		
RIVER:		
STREAM:		
QUATERNARY:		
DATE:		GPS
EVALUATION		
SECTOR/QUATERNARY/REACH/SITE		
INSTREAM HABITAT INTEGI	RITY	RIPARIAN ZONE HABITAT INTEGRITY
PRIMARY WATER ABSTRACTION (IMPACT 1 - 25) FLOW MODIFICATION ((IMPACT 1 - 25) BED MODIFICATION ((IMPACT 1 - 25) CHANNEL MODIFICATION ((IMPACT 1 - 25) WATER QUALITY ((IMPACT 1 - 25) INUNDATION ((IMPACT 1 - 25) TOTAL (OUT OF 150) SECONDARY EXOTIC MACROPHYTES ((IMPACT 1 - 25) EXOTIC FAUNA ((IMPACT 1 - 25) RUBBISH DUMPING ((IMPACT 1 - 25) TOTAL (OUT OF 75)	5 8 0 0 8? 0 21 10 10 carp!! 0	VEGETATION REMOVAL (IMPACT 1 - 25) EXOTIC VEGETATION (IMPACT 1 - 25) BANK EROSION (IMPACT 1 - 25) CHANNEL MODIFICATION (IMPACT 1 - 25) WATER ABSTRACTION (IMPACT 1 - 25) INUNDATION (IMPACT 1 - 25) FLOW MODIFICATION (IMPACT 1 - 25) WATER QUALITY (IMPACT 1 - 25) TOTAL (OUT OF 200) NB: Keep in mind that when you rate each variable (instream vs. riparian ask yourself what the absloute worst case scenario of each variable who be and what the refrence state would be for this particular site to conceptualise a scale. Then score. (
INSTREAM HABITAT INTEGRITY SCORE INTEGRITY CLASS		RIPARIAN ZONE HABITAT INTEGRITY SCORE INTEGRITY CLASS
RATING GUIDE	NONE SMAL (0) (1-5)	

 Table 11 SASS 5 score sheet showing results of the November 2006 invertebrate survey.

Taxon		s	VG	GSM	тот	Taxon		s	VG	GSM	TOT	Taxon		s	VG	GSM	тот
PORIFERA	5			00		HEMIPTERA				00		DIPTERA				00	
COELENTERATA	1					Belostomatidae*	3		B (1)		В	Athericidae	10				
TURBELLARIA	3					Corixidae*	3	1	A			Blepharoceridae					
ANNELIDA						Gerridae*	5		B(B)			Ceratopogonidae					
Oligochaeta	1	В	Α	В	С	Hydrometridae*	6		\ /			Chironomidae	2			Α	Α
Leeches	3	Α				Naucoridae*	7					Culicidae*	1				
CRUSTACEA						Nepidae*	3					Dixidae*	10				
Amphipoda	13					Notonectidae*	3					Empididae	6				
Potamonautidae*	3	Α			Α	Pleidae*	4					Ephydridae	3				
Atvidae	8		A (C)		С	Veliidae/Mveliidae*	5			1	1	Muscidae	1				
Palaemonidae	10					MEGALOPTERA						Psychodidae	1				
HYDRACARINA	8					Corydalidae	8					Simuliidae	5	В	В	Α	С
PLECOPTERA						Sialidae	6					Syrphidae*	1				
Notonemouridae	14					TRICHOPTERA						Tabanidae	5				
Perlidae	12					Dipseudopsidae	10					Tipulidae	5				
EPHEMEROPTER A						Ecnomidae	8					GASTROPODA					
Baetidae 1sp	4					Hydropsychidae 1 sp	4					Ancylidae	6	В			В
Baetidae 2 sp	6			Α		Hydropsychidae 2 sp	6					Bulininae*	3				
Baetidae > 2 sp	12	С	В		С	Hydropsychidae > 2 sr	12	В	В		С	Hydrobiidae*	3				
Caenidae	6		Α			Philopotamidae	10					Lymnaeidae*	3				
Ephemeridae	15					Polycentropodidae	12					Physidae*	3				
Heptageniidae	13					Psychomyiidae/Xiphod	8					Planorbinae*	3				
Leptophlebiidae	9	В			В	Cased caddis:						Thiaridae*	3				
Oligoneuridae	15					Barbarochthonidae SV	13					Viviparidae* ST	5				
Polymitarcyidae	10					Calamoceratidae ST	11					PELECYPODA					
Prosopistomatidae	15					Glossosomatidae SW	11					Corbiculidae	5	B (B)			В
Teloganodidae SW0	12	Α	1	Α	В	Hydroptilidae	6					Sphaeriidae	3				
Tricorythidae	9					Hydrosalpingidae SW	15					Unionidae	6				
ODONATA						Lepidostomatidae	10					Sass score					125
Calopterygidae ST,	10					Leptoceridae	6					No. of taxa					22
Chlorocyphidae	10					Petrothrincidae SWC	11					ASPT					
Chlorolestidae	8					Pisuliidae	10										
Coenagrionidae	4		В	Α	В	Sericostomatidae SW	13					IHAS					
Lestidae	8					COLEOPTERA											
Platycnemidae	10					Dytiscidae*	5	1	В	Α	В	Other biota:					
Protoneuridae	8					Elmidae/Dryopidae*	8					P phi (Fish)					
Zygoptera juvs.	6					Gyrinidae*	5	Α	(C)B		С	Tadpoles					
Aeshnidae	8	-1	1		Α	Haliplidae*	5										
Corduliidae	8					Helodidae	12					Comments:					
Gomphidae	6					Hydraenidae*	8										
Libellulidae	4					Hydrophilidae*	5		Α		Α						
LEPIDOPTERA						Limnichidae	10										
Pyralidae	12					Psephenidae	10										

Table 12 Fish habitat. Velocity-depth classes and cover present at site.

SLOW-DEEP: 5	SLOW-SHALLOW: 1	FAST-DEEP: 4	FAST-SHALLOW: 2
Overhanging vegetation: 3	Overhanging vegetation: 4	Overhanging vegetation: 1	Overhanging vegetation: 3
Undercut banks & root wads: 2	Undercut banks & root wads:	Undercut banks & root wads: 1	Undercut banks & root wads: 2
Substrate: 4	Substrate: 3	Substrate: 4	Substrate: 4
Aquatic macrophytes: 2	Aquatic macrophytes: 3	Aquatic macrophytes: 2	Aquatic macrophytes: 1
Water Column: 4	Water Column: 1	Water Column: 2	Water Column: 1
Remarks: Difficult to sample. Need fyke net	Remarks:	Remarks:	Remarks:

Note: Estimate abundance of each velocity-depth class and cover type using the scale: 0 – absent; 1 – rare; 2 – sparse; 3 – common; 4 - abundant; 5 – very abundant

Table 13 Instream use & surrounding area land use

Table 10 metream dee a surrounding area land dee			
Wiers: 0	Cultivated lands: 1	Grazing: 3	Plantations: 0
Impoundments: 0	Residential: 1	Mines: 0	Industries: 0
Roads: 1	Bridges/crossings: 0	Pumps: 0	Canals: 0
Exotic vegetation:	Aquaculture: 0	Fishing: 1	Recreation/conservation:
3			1

(0=absent; 1=rare; 3=moderate; 4=extensive/intensive)

Remarks: Area assessed = OVYCMA on controlled farm Wag 'n Bietjie

Table 14 Fish habitat integrity at site: Estimated impact of modifications

	1 0 7	· •	
Water abstraction: 0	Flow modification: 0	Bed modification: 0	Channel modification:
			0
Inundation:	Exotic macrophytes: 3	Solid waste disposal:	Indigenous vegetation
		0	removal: 1
Exotic vegetation	Bank erosion: 1		
encroachment: 3			

(Severity of impact: 0=none; 1=small; 3=moderate; 5=large)

Table 15 Fish habitats sampled and efforts

Sample effort	Slow shallow	Fast	Fast Deep	Slow Deep
Electro shocker	10 min	50 min	15 min	
(min)				
Electro shocker:	20 m	75 m	20 m	
length sampled				
Electro shocker:	2 m	50 m	20 m	
width sampled				
Small seine (mesh				5 hauls
size, length, depth,				
hauls)				

Table 16 Fish sampled in the fast shallow habitat.

Table 10 Fish sampled in the last shallow habitat.		
Habitat (velocity-depth class(es)	Fast shallow	
Sampling method:	Electroshock	
Species	Number (J = juvenile, A = abnormality)	
C.gar	Ax1 Jx11 = 12	
B.tri	Ax3	
B.pal	Ax14 Anx1 = 15	
P.phi	Ax2 Jx5 = 7	
B.aen	Ax1 jx3 = 4	
L.cap	Ax2 Jx7 = 9	
C.carpio(exotic)	Jx3 = 3	

Table 17 Fish sampled in the slow shallow habitat.

Table 17 1 Ish sampled in the slow shallow	nasitat.
Habitat (velocity-depth class(es)	Slow shallow
Sampling method:	Electroshocking
Species	Number (J = juvenile, A = abnormality)
B.pal	Jx1 Ax24 = 25
B.tri	Jx1 Ax5 = 6
B.aen	Jx1 = 1
C.carpio (exoctic)	Jx5 = 5
C.gar	Jx2 = 2
L.cap	Jx6 = 6
P.phi	Jx15 Ax3 = 18
G.affinis	Ax1 = 1

Table 18 Fish sampled in the fast deep habitat.

Habitat (velocity-depth class(es)	Fast deep
Sampling method:	Electroshock
Species	Number (J = juvenile, A = abnormality)
L.cap	Ax18 = 18
B.aen	Ax6 = 6

Table 19 Fish sampled in the fast deep habitat.

Habitat (velocity-depth class(es)	Slow deep
Sampling method:	Large seine net (6 haules – very ineffective)
Species	Number (J = juvenile, A = abnormality)
C.carpio (exotic)	Ax1 = 1
C.gar	Ax1 = 1

Survey remarks

Focus of survey became to find missing but expected to occur 3x species including Austroglanis, B. anoplus and L. umbratus

All attempts were unsuccessful due to (believed) possible low abundance of x3 species and techniques used. Need to use a fyke net and boat shocker.

Concluding remarks

These surveys were carried out successfully. Some data is still being iterated but from the findings of these surveys a confident ecological state of the Vaal River in relation to the reach being studied in the Telemetry study will be established.